Genetic programming: where meaning emerges from program code

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Byte Code Genetic Programming

This paper explores the idea of using Genetic Programming (GP) to evolve Java Virtual Machine (JVM) byte code to solve a sample symbolic regression problem. The evolutionary process is done completely in memory using a standard Java environment.

متن کامل

Sub-machine-code Genetic Programming

CPUs are often seen as sequential, however they have a high degree of internal parallelism, typically operating on 32 or 64 bits simultaneously. This paper explores the idea of exploiting this internal parallelism to extend the scope of genetic programming (GP) and improve its eeciency. We call the resulting form of GP sub-machine-code GP. The diierences between sub-machine-code GP and the usua...

متن کامل

Parallel Machine Code Genetic Programming

AIMGP is a very fast linear genetic programming approach that evolves machine code programs. We report on a parallelization of AIMGP for a parallel transputer system resulting in an almost linear speedup. In linear genetic programming (GP) computer programs of imperative programmming languages like C or machine code are evolved (Banzhaf et al. 1998). AIMGP (Automatic Induction of Machine code b...

متن کامل

Towards Byte Code Genetic Programming

We investigate using the GP paradigm to evolve linear genotypes (individuals) that consist of Java byte code. Our prototype GP system (bcGP) is implemented in Java. The evolutionary process is done completely in memory and the fitness of individuals is determined by directly executing them in the Java Virtual Machine (JVM). Our scheme is an effective means for evolving native machine code for t...

متن کامل

Reusing Code in Genetic Programming

In this paper we propose an approach to Genetic Programming based on code reuse and we test it in the design of combinational logic circuits at the gate-level. The circuits evolved by our algorithm are compared with circuits produced by human designers, by Particle Swarm Optimization, by an n-cardinality GA and by Cartesian Genetic Programming.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetic Programming and Evolvable Machines

سال: 2013

ISSN: 1389-2576,1573-7632

DOI: 10.1007/s10710-013-9200-2